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200-MHz NMR spectrometer used in this study was obtained 
via a NSF instrument grant (CHE76-05925). 
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On the Stereochemical Course of the Thermal and 
Photosensitized Intramolecular [2 -I- 2] Cycloaddition 
Reaction of Allyl-Substituted Cyclopropenes1 

Sir: 

Cycloaddition of two olefins and its reverse, cycloreversion 
or the cleavage of cyclobutane, have been the object of exten­
sive theoretical2 and experimental studies.3 Thermal [2 + 2] 
cycloaddition reactions of olefins can be symmetry allowed and 
therefore concerted if the [W2S + „2R] combination mode is 
followed. To our knowledge, no authenticated examples of this 
phenomenon have been reported to date with simple -IT sys­
tems.4,5 Presumably this is because steric hindrance and angle 
strain factors generally develop to rather prohibitive levels as 

the two 7T bonds attempt to attain the requisite orthogonality. 
Related studies dealing with the pyrolysis of stereochemically 
labeled alkylcyclobutanes have disclosed that antarafacial 
motion by at least one of the developing olefinic moieties is not 
readily achieved.6 As a result, little stereoselectivity has been 
observed. In this communication we wish to describe the ste­
reochemical course of the thermal and photosensitized intra­
molecular [2 + 2] cycloaddition reactions of a number of 
allyl-substituted cyclopropenes. Although the results obtained 
are compatible with orbital symmetry predictions,2 the cy­
cloaddition reactions actually proceed via a diradical inter­
mediate. 

Thermolysis of (Z)-1,2-diphenyl-3-methyl-3-(2-butenyl)-
cyclopropene (1) at 190 0 C for 48 h produced an equilibrium 
mixture of recovered starting material (55%) and exo-3,6-
dimethyl-l,2-diphenyltricyclo[2.2.0.02-6]hexane (2) (45%). 
The same distribution of products was obtained by heating 
tricyclohexane 2 at 190 0 C for 48 h. The thermal cycloaddition 
reaction of the isomeric ^-substituted cyclopropene 3 was also 
investigated.7 Heating a sample of cyclopropene 3 under 
similar conditions afforded an equilibrium mixture of recov­
ered starting material (80%) and era/o-tricyclohexane 4 (20%). 
Appropriate control experiments established that no cis-trans 
isomerization of either the starting materials or the products 
was operative under the reaction conditions. 

CH1' ^ l CH:," Ph 

3 H 4 
(inversion) 

The thermal chemistry of the closely related (Z)- (5) and 
[E)-1,3-diphenyl-2-methyl-3-(2-butenyl)cyclopropenes (6) 
were also studied so as to provide additional documentation 
for the stereochemical course of the cycloaddition reaction. 
Thermolysis of cyclopropene 5 at 175 0 C for 12 h afforded a 
mixture of exo-tricyclohexane 7 (16%) and cyclopropene 8 
(11%).8 Subjection of 6 to similar thermolysis conditions 
produced a 2:1 mixture of enrfo-tricyclohexane 9 and cyclo­
propene 8. The structures of the endo- and exo-methyl-sub-
stituted tricyclohexanes were easily assigned on the basis of 
their characteristic 270-MHz N M R spectra. The absence of 
coupling between H3 and H4 with tricyclohexanes 2 and 7 fixes 
the C3-methyl group in the exo position. This is to be expected 
since molecular models show that the dihedral angle for this 
set of protons is ~90° . Spin-decoupling experiments indicate 
that protons H3 and H4 in the endo-substituted series (4 and 
9) are coupled by 4.5 Hz.9 

The striking feature of these results is that the intramolec­
ular thermal cycloaddition reaction proceeds with total in­
version of stereochemistry about the olefinic ir bond. A 
mechanism which is consonant with all the available data is 
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outlined below. This process involves the initial formation of 
a biradical in a conformation which is analogous to the chair 
conformation of cyclohexane. Ring inversion of the initially 
formed chair intermediate 10 generates the boat biradical 11 
which cyclizes to the tricyclo[2.2.0.02,6]hexane ring system 
at a faster rate than bond fragmentation.10 The ring flip of the 
initially formed chair intermediate 10 to the boat diradical 11 
is the major factor responsible for the overall inversion of ste­
reochemistry in the thermal cycloaddition. It is interesting to 
note that the thermolysis of 5 and 6 produces both the tricy-
clohexane ring and the Cope rearranged product 8. Cyclo­
propenes 1 and 3, on the other hand, give only [2 + 2] cy-
cloadducts. This difference in behavior is probably a conse­
quence of the restoration of conjugation between the phenyl 
substituents which can take place with 5 and 6 but not with 1 
and 3. Also noteworthy is the fact that there is a distinct re-
giochemical preference in the intramolecular cycloaddition 
reaction of cyclopropenes 5 and 6. The observed regioselectivity 
can be rationalized in terms of the formation of the most stable 
biradical intermediate (i.e., 10). The facility with which these 
systems undergo internal cycloaddition relative to other 1,5-
dienes merits some comment. Undoubtedly, the high degree 
of strain present in the cyclopropene ring (54 kcal /mol)" 
makes the tricyclo[2.2.0.02'6]hexane skeleton thermody-
namically more stable. The strain relieved in bond-making 
results in a lower energy pathway for cycloaddition than 
bond-breaking to an allyl and cyclopropenyl radical. 

In marked contrast to the thermal results, the photosensi­
tized (thioxanthone) cycloaddition reaction of cyclopropenes 
3 and 12 gave rise to tricyclohexanes 2 and 13 where complete 

5, R1 = H; R 2 = CH3 

6, R1 = CH3; R2 = H 
tl 

R2-

4 
Ri 

Il 

tJ 

R2-

Ri 

7, R1
 = H; R2

 = CH3 

9, R1
 = CH3; R2 — H 

retention of stereochemistry about the ir bond has occurred. 
A similar result was noted with cyclopropene 6.12 

H 
3, R, =Ph;R 2 = CH3 

6, R1 = CH3; R2 = Ph 
12, R1 = R2 = Ph 

Ph R > 

(retention) 

2, R1 = Ph;R2 = CH3 

7, R1 = CH3; R2 = Ph 
13, R1

 = R2
 = Ph 

The above results indicate that there is a major difference 
in the stereochemical course of the thermal and triplet induced 
[2 + 2] cycloaddition reactions of these allyl-substituted cy­
clopropenes. Reasonable mechanistic options for the sensitized 
cycloaddition reaction include a concerted pathway or a 
stepwise process involving a diradical intermediate. It is 
tempting to suggest that the triplet-induced reaction proceeds 
through a boatlike conformation. Overlap of the frontier or-
bitals involved in the [2 + 2] cycloaddition reaction should 
favor the boatlike arrangement in the excited state and disfavor 
it in the ground state.13 

Finally, it should be noted that the triplet-sensitized reaction 
of cyclopropene 14 gave rise to a [2 + 2] cycloadduct 15 (80%) 
and a 3-methylene-substituted bicyclo[3.1.0]hexane 16 (20%). 
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Similar results were encountered with cyclopropene 17, al­
though, in this case, only one of the two possible bicyclohexanes 
was produced (ratio of 15:18 = 5:3). The formation of the bi-
cyclohexane ring proceeds via an intramolecular hydrogen 
atom transfer reaction.14 Both products were equally quenched 

16, R1 = Ph; R2 = CH3 
18, R1 = CH3;R2 = Ph 

with added triplet quenchers, thereby indicating that they are 
both derived from a common triplet state. The regioselectivity 
exhibited by cyclopropene 17 is undoubtedly related to the fact 
that hydrogen transfer to the methyl bearing carbon allows 
maximum delocalization of the radical centers in the resulting 
diradical intermediate (i.e., 19). 
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Reaction of [Fe(SC6Hs)4]
2- with Organic Trisulfides 

and Implications Concerning the Biosynthesis 
of Ferredoxins. Synthesis and Structure of the 
[(C6Hs)4P]2Fe2Si2 Complex 

Sir: 

The synthesis,1 structural characterization,2 and the 
Mossbauer spectral properties' of the tetrahedral 
[Fe(SC6Hs^]2- complex anion (I) have been reported. The 
electronic spectra, magnetic properties, and fine and hyperfine 
parameters as derived from an analysis of the Mossbauer 
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